B.Sc. Part II Inorganic Chemistry

Multiple Choice

1.	Coordination number of Fe in potassium ferrocyanide:-				
	(a) 4	(b) 3	(c) 6	(d) 5	
2.	Electronic configuration of Cr(24) is:-				
	(a) $3d^44s^2$	(b) $3d^54s^1$	(c) $3d^54s^2$	(d) $3d^64s^2$	
3.	Which oxidation state is more stable for f-block elements?				
	(a) +2	(b) +4	(c) +1	(d) +3	
4.	Lanthanides are also known as:-				
	(a) Actinides		(b) Rare earth	(b) Rare earth elements	
	(c) Non Metal		(d) Metal		
5.	Oxidation state of Ni in complex Ni(CO) ₄ is:-				
	(a) 2	(b) 3	(c) 1	(d) 0	
6.	Number of donor atoms in bidentate ligand is:-				
	(a) 4	(b) 5	(c) 2	(d) 1	
7.	NO ₂ ⁻ ligand act as:-				
	(a) Monodentate ligand		(b) Tridentate ligand		
	(c) Ambidentate ligand		(d) Bidentate ligand		
8.	Give example of nonprotonic solvent:-				
	(a) CH ₃ COOH	(b) H_2SO_4	(c) liq.SO ₂	(d) H_2O	
9.	Hybridisation in complex [Ni(CN) ₄] ²⁻ is:-				
	(a) sp^3	(b) dsp^2	(c) sp^2	(d) sp	
10.	Which geometrical isomer can show optical isomerism:-				
	(a) cis		(b) trans	(b) trans	
	(c) cis & trans		(d) None of the above		

Short Questions:-

- 1. Why melting point of chromium is the highest among the 3d metals?
- 2. Explain ambidentate ligand with example.
- 3. Write the postulates of Werner's theory
- 4. Write the limitation of VBT.
- 5. Explain the oxidation states of lanthanides with example.
- 6. Explain ionisation isomerism with example.
- 7. Discuss the complex formation tendency of actinides.
- 8. Explain Arrhenius theory of acids and bases.
- 9. Explain protonic solvents.
- 10.Metal ammonia solutions are good conductors of electricity, explain.
- 11. Compare liquid NH₃ and H₂O as solvents.
- 12. Write uses of redox potential data.
- 13. Write short note on magnetic properties of lanthanides.
- 14. Explain colour of transition metal complexes.
- 15. Define the term coordination number and coordination sphere.

Long Questions:-

- 1. Write the IUPAC name of the following compounds:-
 - (i) Na₂[CuCl₄]

(ii) $[Cr(NH_3)_5ONO]Cl_2$

(iii) [Co(en)₂Cl₂]Cl

- (iv) $Na_3[Fe(NH_3)_5NO]$
- 2. Write short note on ligands.
- 3. On the basis of VBT explain why $[Co(NH_3)_6]^{3+}$ is diamagnetic but $[CoF_6]^{3-}$ is paramagnetic.
- 4. Explain optical isomerism in octahedral complexes.
- 5. Explain lanthanide contraction and its consequences.
- 6. Explain super heavy elements.
- 7. Discuss Lux-flood theory of acid and base, on the basis of acidity scale explain the behaviour of acidic, basic and amphoteric oxides.
- 8. Discuss various types of reactions occuring in liquid SO₂.
- 9. How many types of solvents are there on the basis of their behaviour towards protons.
- 10. What are Latimer diagrams? Explain.